发表论著(Publications) 

第一/通讯作者SCI论文:

[37] Zhang Y, Manga M*, Fu L-Y, Zhang H, Huang T*Yang Q, Cui Z-D, Qi S*, Huang Y (2024) Long‐ and short‐term effects of seismic waves and coseismic pressure changes on fractured aquifers. Journal of Geophysical Research: Solid Earth 129,  e2023JB027970, doi: 10.1029/2023JB027970 [link]

[36] Li Y, Zhou X*, Huang T*Tian J, He M, Zhu X, Li J, Zhang Y, Wu Z, Li B, Yan Y, Wang Y, Yao B, Zeng Z, Xing G, Cui S (2024) Origins of volatiles and helium fluxes from hydrothermal systems in the Eastern Himalayan Syntaxis and constraints on regional heat and tectonic activities. Journal of Hydrology 631, 130776, doi: 10.1016/j.jhydrol.2024.130776 [link]

[35] Zhang Y, Chu B, Huang T*Qi S, Manga M*, Zhang H, Zheng B, Zhou Y (2024) Using the tidal response of groundwater to assess and monitor caprock confinement in CO2 geological sequestration. Water 16, 868, doi: 10.3390/w16060868 [link]

[34] Huang T*, Li Z, Long Y, Zhang F, Pang Z (2022) Role of desorption-adsorption and ion exchange in isotopic and chemical (Li, B, and Sr) evolution of water following water–rock interaction. Journal of Hydrology 610, 127800, doi: 10.1016/j.jhydrol.2022.127800 [link]

[33] Long Y, Huang T*, Zhang F, Zhao Y (2022) Soil column experimental study on the effect of soil structure disturbance on water chemistry. International Journal of Environmental Research and Public Health 19(23), 15673, doi: 10.3390/ijerph192315673 [link] 

[32] Li Z, Huang T*, Wang G*, Long Y, Zhang F, Pang Z (2022) A conceptual model for correcting groundwater 14C age. Applied Geochemistry 143, 105360, doi: 10.1016/j.apgeochem.2022.105360 [link] 

[31] Zhang Y*, Huang T* (2022) DNA-based tracers for the characterization of hydrogeological systems—recent advances and new frontiers. Water 14(21), 3545, doi: 10.3390/w14213545 [link]  

[30] Zhang Y*, Sun X, Huang T*, Qi S, Fu L-Y, Yang Q-Y, Hu J, Zheng B, Zhang W (2022) Possible continuous vertical water leakage of deep aquifer: Records from a deep well in Tianjin Province, North China. Geofluids 2022, 4419310, doi: 10.1155/2022/4419310 [link] 

[29] Zhang F, Huang T*, Man W, Hu H, Long Y, Li Z, Pang Z (2021) Contribution of recycled moisture to precipitation: A modified d-excess-based model. Geophysical Research Letters 48(21), e2021GL095909, doi: 10.1029/2021GL095909 [link]

[28] Long Y, Huang T*, Zhang F, Li Z, Ma B, Li Y, Pang Z (2021) Origin of sulfate in the unsaturated zone and groundwater of a loess aquifer. Hydrological Processes 35(4), e14166, doi:10.1002/hyp.14166 [link] 

[27] Ma B, Huang T*, Li J, Li Z, Long Y, Zhang F, Pang Z (2021) Tracing nitrate source and transformation in a semiarid loess aquifer with the thick unsaturated zone. Catena 198, 105045, doi: 10.1016/j.catena.2020.105045 [link]

[26] Huang T*, Li Z, Mayer B*, Nightingale M, Li X, Li G, Long Y, Pang Z (2020) Identification of geochemical processes during hydraulic fracturing of a shale gas reservoir: a controlled field and laboratory water-rock interaction experiment. Geophysical Research Letters 47(20), e2020GL090420, doi:  10.1029/2020GL090420 [link]

[25] Huang T*, Pang Z*, Yang S, Yin L (2020) Impact of afforestation on atmospheric recharge to groundwater in a semiarid area. Journal of Geophysical Research: Atmospheres 125(9), e2019JD032185, doi: 10.1029/2019JD032185 [link]

[24] Huang T, Ma B, Pang Z*, Li Z, Li Z, Long Y (2020) How does precipitation recharge groundwater in loess aquifers? Evidence from multiple environmental tracers. Journal of Hydrology 583, 124532, doi: 10.1016/j.jhydrol.2019.124532 [link]

[23] Huang T, Pang Z*, Li Z, Li Y, Hao Y (2020) A framework to determine sensitive inorganic monitoring indicators for tracing groundwater contamination by produced formation water from shale gas development in the Fuling Gasfield, SW China. Journal of Hydrology 581, 124403, doi: 10.1016/j.jhydrol.2019.124403 [link]

[22] Li Z, Huang T*, Ma B, Long Y, Zhang F, Tian J, Li Y, Pang Z (2020) Baseline groundwater quality before shale gas development in Xishui, Southwest China: Analyses of hydrochemistry and multiple environmental isotopes (2H, 18O, 13C, 87Sr/86Sr, 11B, and noble gas isotopes). Water 12(6), 1741, doi: 10.3390/w12061741 [link]  

[21] Long Y, Liu J, Huang T* (2020) Impact of afforestation on soil hydraulic conductivity and repellency index based on microdisk infiltration experiment. Fresenius Environmental Bulletin 29(7A): 5855–5859 [link]

[20] Huang T*, Fan Y, Long Y, Pang Z (2019) Quantitative calculation for the contribution of acid rain to carbonate weathering. Journal of Hydrology 568: 360–371 [link]

[19] Huang T*, Li Z, Ma B, Long Y (2019) Tracing the origin of groundwater nitrate in an area affected by acid rain using dual isotopic composition of nitrate. Geofluids 2019, 8964182, doi: 10.1155/2019/8964182 [link]

[18] Huang T*, Ma B (2019) The origin of major ions of groundwater in a loess aquifer. Water 11(12), 2464, doi: 10.3390/w11122464 [link]

[17] Huang T, Pang Z*, Liu J, Ma J, Gates J (2017) Groundwater recharge mechanism in an integrated tableland of the Loess Plateau, northern China: insights from environmental tracers. Hydrogeology Journal  25(7): 2049–2065 [link] 

[16] Huang T, Pang Z*, Liu J, Yin L, Edmunds WM (2017) Groundwater recharge in an arid grassland as indicated by soil chloride profile and multiple tracers. Hydrological Processes 31(5): 1047–1057 [link]

[15] Huang T, Pang Z*, Li J, Xiang Y, Zhao Z (2017) Mapping groundwater renewability using age data in the Baiyang alluvial fan, NW China. Hydrogeology Journal 25(3): 743–755 [link]

[14] Huang T*, Pang Z, Tian J, Li Y, Yang S, Luo L (2017) Methane content and isotopic composition of shallow groundwater: implications for environmental monitoring related to shale gas exploitation. Journal of Radioanalytical and Nuclear Chemistry 312(3):577–585 [link]

[13] Huang T*, Yang S, Pang Z (2017) Hydrogeochemistry evolution and fluoride accumulation in an arid piedmont alluvial-proluvial plain. Fresenius Environmental Bulletin 26(5): 3569–3576 [link]

[12] Huang T*, Hao Y, Pang Z, Li Z, Yang S (2017) Radioactivity of soil, rock and water in a shale gas exploitation area, SW China. Water 9(5), 299, doi: 10.3390/w9050299 [link]

[11] Li Y, Huang T*, Pang Z, Jin C (2017) Geochemical processes during hydraulic fracturing: a water-rock interaction experiment and field test study. Geosciences Journal 21(5): 753–763 [link]

[10] Huang T*, Yang S, Liu J, Li Z (2016) How much information can soil solute profiles reveal about groundwater recharge. Geosciences Journal 20(4): 495–502 [link]

[9] Huang T*, Yang S, Liu J (2016) Using soil profile to assess groundwater recharge and effect of land-use change in a rain-fed agricultural area. Fresenius Environmental Bulletin 25(3): 862–873 [link]

[8] Li Y, Huang T*, Pang Z*, Wang Y, Jin C (2016) Geochemical characteristics of shallow groundwater in Jiaoshiba shale gas production area: implications for environmental concerns. Water 8(12), 552, doi: 10.3390/w8120552 [link]

[7] Huang T, Pang Z*, Edmunds WM (2013) Soil profile evolution following land-use change: Implications for groundwater quantity and quality. Hydrological Processes 27: 1238–1252 [link]

[6] Huang T, Pang Z*, Chen Y, Kong Y (2013) Groundwater circulation relative to water quality and vegetation in an arid transitional zone linking oasis, desert and river. Chinese Science Bulletin 58: 3088–3097 [link]

[5] Huang T, Pang Z*, Yuan L (2013) Nitrate in groundwater and the unsaturated zone in (semi)arid northern China: baseline and factors controlling its transport and fate. Environmental Earth Sciences 70: 145–156 [link]

[4] Liu J, Huang T*, Yuan L (2013) Fluoride content in groundwater and the unsaturated zone in three large basins in (semi)arid northern China. Fresenius Environmental Bulletin 22(8A): 2393–2401 [link]

[3] Huang T, Pang Z* (2012) The role of deuterium excess in determining the water salinisation mechanism: a case study of the arid Tarim River Basin, NW China. Applied Geochemistry 27: 2382–2388 [link]

[2] Huang T, Pang Z* (2011) Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: A case study at Guyuan and Xifeng in the Loess Plateau of China. Hydrogeology Journal 19: 177–186 [link]

[1] Huang T, Pang Z* (2010) Changes in groundwater induced by water diversion in the Lower Tarim River, Xinjiang Uygur, NW China: evidence from environmental isotopes and water chemistry. Journal of Hydrology 387: 188–201 [link]

 

共同作者SCI论文:

[26] Gao B, Li Y*, Pang Z, Huang T, Kong Y, Li B, Zhang F (2024) Geochemical mechanisms of water/CO2-rock interactions in EGS and its impacts on reservoir properties: A review. Geothermics 118, 102923, doi: 10.1016/j.geothermics.2024.102923 [link] 

[25] Dong Y, Gao J*, Liu Y, Tao L, Wu J, Zhu P, Huang H, Zheng H, Huang T (2024) Salinization of groundwater in shale gas extraction area in the Sichuan Basin, China: Implications for water protection in shale regions with well-developed faults. Science of The Total Environment 915, 170065, doi: 10.1016/j.scitotenv.2024.170065 [link] 

[24] Zhang F, Li Y*, Zhou X*, Huang T, Tian J, Cheng Y, Zhao Y (2023) Geochemical behaviors of rare earth elements in granite-hosted geothermal systems in SE China. Geothermics 115, 102826, doi: 10.1016/j.geothermics.2023.102826 [link] 

[23] Chu B, Feng G, Zhang Y*, Qi S, Li P, Huang T (2023) Residual saturation effects on CO2 migration and caprock sealing: a study of permeability and capillary pressure models. Water 15(18), 3316. doi: 10.3390/w15183316 [link] 

[22] Qi S*, Zheng B, Wang Z, Zhao H, Cui Z, Huang T, Guo S, Fu L, Dong P (2023) Geological evaluation for the carbon dioxide geological utilization and storage (CGUS) site: A review. Science China Earth Sciences 66(9): 1917–1936, doi: 10.1007/s11430-022-1107-x [link] 

[21] Zhang Y, Fu L-Y*, Zhu A*, Zhao L, Qi S, Huang T, Ma Y, Zhang W (2023) Anisotropy and heterogeneity induced by shale in aquifer lithology — influence of aquifer shale on the leaky model with tidal response analysis. Water Resources Research 59(2), e2021WR031451, doi: 10.1029/2021WR031451 [link] 

[20] Li Y*, Luo J, Tian J, Cheng Y, Pang Z, Huang T, Fan Y (2023) Formation of the hydrothermal system from granite reservoir for power generation in igneous rock areas of South China. Geothermics 110, 102673. doi: 10.1016/j.geothermics.2023.102673 [link] 

[19] Tian J, Zhou X*, Yan Y, He M, Li J, Dong J, Liu F, Ouyang S, Li Y, Tian L, Wang Y, Huang T, Pang Z (2023) Earthquake-induced impulsive release of water in the fractured aquifer system: Insights from the long-term hydrochemical monitoring of hot springs in the Southeast Tibetan Plateau. Applied Geochemistry 148, 105553. doi: 10.1016/j.apgeochem.2022.105553 [link] 

[18] Bao Y, Pang Z*, Huang T, Li Y, Tian J, Luo J, Qian T (2022) Chemical and isotopic evidences on evaporite dissolution as the origin of high sulfate water in a karst geothermal reservoir. Applied Geochemistry 145, 105419. doi: 10.1016/j.apgeochem.2022.105419 [link] 

[17] Fan Y, Pang Z*, Liao D, Tian J, Hao Y, Huang T, Li Y (2019) Hydrogeochemical characteristics and genesis of geothermal water from the Ganzi geothermal field, eastern Tibetan Plateau. Water 11(8), 1631. doi: 10.3390/w11081631 [link] 

[16] Lyu M, Pang Z*, Huang T, Yin L (2019) Chemical and isotopic evidence on hydrogeochemical evolution and groundwater quality assessment in the Dake Lake Basin, Northwest China. Journal of Radioanalytical and Nuclear Chemistry 320(3): 865–883 [link]

[15] Lyu M, Pang Z*, Yin L, Zhang J, Huang T, Yang S, Li Z, Wang X, Gulbostan T (2019) The control of groundwater flow systems and geochemical processes on groundwater chemistry: a case study in Wushenzhao Basin, NW China. Water 11(4), 790, doi: 10.3390/w11040790 [link] 

[14] Tian J, Pang Z*, Guo Q, Wang Y, Li J, Huang T, Kong Y (2018) Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the Eastern Himalayan Syntax. Geothermics 74: 92–105 [link] 

[13] Li Z*, Lin X, Xiang W, Chen X, Huang T (2017) Stable isotope tracing of headwater sources in a river on China’s Loess Plateau. Hydrological Sciences Journal 62(13): 2150–2159 [link]

[12] Hou X, Zhang J, Liu J*, Huang T (2016) Rational exploitation of large wellfields based on ecological water demand in arid inland basins. Fresenius Environmental Bulletin 25(8): 3003–3011

[11] Li J, Pang Z*, Froehlich K, Huang T, Kong Y, Song W, Yun H (2015) Paleo-environment from isotopes and hydrochemistry of groundwater in East Junggar Basin, Northwest China. Journal of Hydrology 529: 650–661 [link]

[10] Kong Y, Pang Z*, Li J, Huang T (2014) Seasonal variations of water isotopes in the Kumalak river catchments, western Tianshan mountains, central Asia. Fresenius Environmental Bulletin 23(1A): 169–174

[9] Li J, Pang Z*, Kong Y, Zhou M, Huang T (2014) Contrasting seasonal distribution of stable isotopes and deuterium excess in precipitation over China. Fresenius Environmental Bulletin 23(9): 2074–2085

[8] Pang Z*, Yuan L, Huang T, Kong Y, Liu J, Li Y (2013) Impacts of human activities on the occurrence of groundwater nitrate in an alluvial plain: A multiple isotopic tracers approach. Journal of Earth Science 24(1): 111–124 [link]

[7] Yuan L, Pang Z*, Huang T (2012) Integrated assessment on groundwater nitrate by unsaturated zone probing and aquifer sampling with environmental tracers. Environmental Pollution 171: 226–233 [link]

[6] Pang Z*, Kong Y, Froehlich K, Huang T, Yuan L, Li Z, Wang F (2011) Processes affecting isotopes in precipitation of an arid region. Tellus B  63: 352–359 [link]

[5] Pang Z*, Huang T, Chen Y (2010) Diminished groundwater recharge and circulation relative to degrading riparian vegetation in the middle Tarim River, Xinjiang Uygur, Western China. Hydrological Processes 24: 147–159 [link]

[4] Ma J*, Pan F, Chen L, Edmunds WM, Ding Z, He J, Zhou K, Huang T (2010) Isotopic and geochemical evidence of recharge sources and water quality in the Quaternary aquifer beneath Jinchang city, NW China. Applied Geochemistry 25: 996–1007 [link]

[3] Ma J*, Ding Z, Edmunds WM, Gates JB, Huang T (2009) Limits to recharge of groundwater from Tibetan Plateau to the Gobi desert, implications for water management in the Mountain front. Journal of Hydrology 364: 128–141 [link]

[2] Ma J*, Ding Z, Wei G, Zhao H, Huang T (2009) Sources of water pollution and evolution of water quality in the Wuwei basin of Shiyang river, Northwest China. Journal of Environmental Management 90: 1168–1177 [link]

[1] Chen Y, Pang Z*, Chen Y, Li W, Xu C, Hao X, Huang X, Huang T, Ye Z (2008) Response of riparian vegetation to water-table changes in the lower reaches of Tarim River, Xinjiang Uygur, China. Hydrogeology Journal 16: 1371–1379 [link]

 

会议论文及中文论文:

 

[28] 赵雅静, 黄天明*昝朝耀, 龙吟, 李义曼, 张艳, 祁生文, 庞忠和 (2024) 地下水年龄及其在含水层封闭性评价中的应用. 矿物岩石地球化学通报 43(x): x–x [link]

[27] 李彬, 李义曼*, 庞忠和, 黄天明高彬彬 (2024) 地热系统钙华和硅华定年方法研究进展及其应用. 煤田地质与勘探 52(1): 1–12 [link

[26] 黄天明李义曼, 李晓, 赫建明, 祁生文, 庞忠和* (2023) 页岩水:被唤醒的水循环僵尸矿物岩石地球化学通报 42(6): 1439–1441 [link

[25] 李义曼*, 罗霁, 陈凯, 黄天明天娇, 程远志 (2023) 广东省丰良地热田高氟地热流体成因及热储温度评价地质论评  69(4): 1337–1348 [link]

[24] 祁生文*, 郑博文, 王赞, 赵海军, 崔振东, 黄天明*郭松峰, 付雷, 董平川 (2023) 二氧化碳地质利用与封存场址的地质评价中国科学: 地球科学 53(9): 1937–1957, doi: 10.1360/N072022-0351 [link]

[23] Huang T, Long Y, Zhao Y, Pang Z (2023) Impact of sorption–desorption and ion exchange on isotopic composition following water-rock interaction. XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG). Berlin, Germany, 11-21 July, 2023, IUGG23-2609, https://doi.org/10.57757/IUGG23-2609 [link]

[22] 黄天明*龙吟张芬赵雅静刘文景李义曼马金珠祁生文庞忠和 (2023) 典型黄土塬区地下水水化学成因机制及碳循环意义第四纪研究 43(2): 356–367

[21] 谢迎春李义曼*, 王宗满孙国强卜宪标庞忠和黄天明 (2023) 地热流体开发利用中防垢除垢技术研究进展新能源进展 11(1): 21–28

[20] 龙吟黄天明*张芬马宝强马高高韩振华张路青 (2022) 硫化金属矿开采废石堆放对水环境的影响机理及对潜在治理措施的启示意义工程地质学报 30(3): 874–883

[19] Zhang F, Huang T, Pang Z (2022) Intensive quantification of precipitation moisture sources in the eastern Asian monsoon zone: A modified deuterium-excess-based model. IAHS-AISH Scientific Assembly 2022. Montpellier, France, 29 May–3 Jun 2022, IAHS2022-561 [link]

[18]  Huang T*, Li Z, Mayer B, Nightingale M, Pang Z, Li X , Li G (2020) Field and Laboratory Studies of the Water Chemistry Evolution of Flowback Fluids from a Shallow Shale Gas Well. Goldschmidt Abstract. doi: 10.46427/gold2020.1095 [link]

[17] 利振彬黄天明*庞忠和熊德明李义曼天娇李晓马凤山郝银磊 (2019) 页岩气开发的地下水环境背景值、监测指标及污染示踪方法研究——以焦石坝区块为例工程地质学报 27(1): 170–177

[16] Huang T*, Ma B, Long Y, Pang Z (2019) The role of unsaturated zone in estimating groundwater recharge in arid and semiarid areas as depicted by geochemical tracers. E3S Web of Conferences [WRI 16] 98, 12007 doi: 10.1051/e3sconf/20199812007 [link] 

[15] 庞忠和*, 黄天明杨硕袁利娟 (2018) 包气带在干旱半干旱地区地下水补给研究中的应用工程地质学报 26(1): 51–61

[14] Huang T*, Li Y, Pang Z, Wang Y, Yang S (2017) Groundwater baseline water quality in a shale gas exploration site and fracturing fluid - shale rock interaction. Procedia Earth and Planetary Science [WRI 15] 17: 638–641 [link]

[13] Huang T*, Yang S, Li Z (2016) Genesis of the inorganic carbon with high carbon-13 content in brine water of the Lower Silurian Longmaxi shale. Internation Journal of Geoheritage 4(2): 73–75

[12] 李捷庞忠和*, 古丽波斯坦.吐逊江孔彦龙黄天明白国营赵泓漪周东杨忠山 (2016) 北疆大气降水水汽源识别及其对地下水补给的指示意义科技导报 34(18): 118–124

[11] 刘记来*, 庞忠和黄天明王素芬 (2014) 北京马池口应急水源地开采极限与安全水位研究第四纪研究 34(5): 1117–1124

[10] Huang T, Pang Z* (2013) Groundwater recharge and dynamics in northern China: implications for sustainable utilization of groundwater. Procedia Earth and Planetary Science [WRI 14] 7: 369–372 [link]

[9] Huang T, Liu J, Wang G* (2012) Groundwater baseline quality in the Minqin Basin, NW China. Advanced Materials Research 518-523: 3643–3646 [link]

[8] Huang T*, Pang Z* (2011) A combined conceptual model (V&P model) to correct groundwater radiocarbon age. In: 2011 International Symposium on Water Resource and Environmental Protection. 20-22 May 2011, Xi'an China, pp. 28–30. doi: 10.1109/ISWREP.2011.5892937 [link] 

[7] 刘记来*, 刘超黄天明王素芬杜春龙季明锋 (2010) 基于调蓄试验及数值模拟的北京市西郊地下水库人工补给效果评估水文 30(3): 33–37

[6] 黄天明*聂中青袁利娟 (2008) 西部降水氢氧稳定同位素温度及地理效应干旱区资源与环境 22(8): 76–81

[5] 黄天明*庞忠和 (2007) 应用环境示踪剂探讨巴丹吉林沙漠及古日乃绿洲地下水补给现代地质 21(4): 624–631

[4] 马金珠*, 黄天明丁贞玉, WM Edmunds (2007) 同位素指示的巴丹吉林沙漠南缘地下水补给来源地球科学进展  22(9): 922–930

[3] 张宝军, 马金珠*, 赵鑫黄天明 (2007) 50年来民勤县气温变化特征及其原因分析干旱地区农业研究  25(2): 226–229

[2] 马金珠*, 李相虎黄天明, WM Edmunds (2005) 石羊河流域水化学演化与地下水补给特征资源科学 27(3): 117–122

[1] 黄天明*王雄师, 石培泽 (2004) 干旱区生态需水量估算与退化生态重建干旱区资源与环境 18(8): 43–47